Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Peter Nockemann and Gerd Meyer*

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln,
Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.040 \AA$
R factor $=0.059$
$w R$ factor $=0.171$
Data-to-parameter ratio $=23.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

μ-Pyrazine- $\kappa^{2} N: N^{\prime}$-bis[diiodomercury(II)]

In $\left[\mathrm{Hg}_{2} \mathrm{I}_{4}(\mathrm{Pyp})\right]$ (Pyp $=$ pyrazine, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$), centrosymmetric molecules consist of two HgI_{2} units connected by a pyrazine molecule.

Received 29 March 2004
Accepted 29 April 2004
Online 8 May 2004

Comment

The coordination chemistry of divalent mercury with N -donor ligands has been reviewed several times (e.g. Grdenić, 1965; Breitinger \& Brodersen, 1970). In a systematic structural study, we have used diazines as N -donor ligands to mercuric halides (Nockemann, 2002; Meyer \& Nockemann, 2003).

(I)

The structure of $\left[\mathrm{Hg}_{2} \mathrm{I}_{4}(\mathrm{Pyp})\right]$, (I), consists of two HgI_{2} molecules, which are connected by the 1 and 4 positions of a pyrazine molecule. The complete discrete molecule is centrosymmetric. The $\mathrm{Hg}-\mathrm{N}$ bond length [2.511 (18) \AA] is shorter than in the adduct of pyrazine with mercuric bromide HgBr_{2} (Nockemann \& Meyer, 2004b), indicating somewhat stronger covalent contributions. This affects also the $\mathrm{I}-\mathrm{Hg}-\mathrm{I}$ angle, which is bent to $163.41(7)^{\circ}$, smaller than that of the bromide at 167.78 (3) ${ }^{\circ}$. The $\mathrm{Hg}-\mathrm{I}$ bond lengths are 2.6036 (19) and 2.6278 (19) \AA, comparable to those in mercury(II) iodide itself in its metastable orange modification, at $2.612 \AA$ (Jeffrey \& Vlasse, 1967), but shorter than in the

Figure 1

Packing diagram of $\left[\mathrm{Hg}_{2} \mathrm{I}_{4}(\mathrm{Pyp})\right]$, viewed approximately down the b axis.

Figure 2
View of the $\left[\mathrm{Hg}_{2} \mathrm{I}_{4}(\mathrm{Pyp})\right]$ molecule, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
room-temperature modification, at $2.784 \AA$ (Turner \& Harmon, 1989).

There are no significant interactions between the molecules in the crystal structure. Thus, a molecular compound with a 2:1 ratio of HgI_{2} to pyrazine is formed, even though the synthesis employed a large excess of pyrazine. The series of adducts of pyrazine with $\mathrm{HgCl}_{2}, \mathrm{HgBr}_{2}$ and HgI_{2} exhibits a tendency to depolymerization in this order (Nockemann \& Meyer, 2004a,b).

Experimental

[$\left.\mathrm{Hg}_{2} \mathrm{I}_{4}(\mathrm{Pyp})\right]$ was obtained by adding a solution of an excess of pyrazine ($2.0 \mathrm{~g}, 25 \mathrm{mmol}$) in ethanol to an ethanolic solution of mercury(II) iodide ($2.27 \mathrm{~g}, 5 \mathrm{mmol}$) in a Schlenk vessel under an argon atmosphere. Yellow crystals were obtained by slow evaporation of the ethanol into a second vessel, cooled with dry ice. Exposure of the crystals to moist air results in their decomposition after a few hours.

Crystal data

$\left[\mathrm{HgI}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$
$M_{r}=988.87$
Triclinic, $P \overline{1}$
$a=7.107$ (2) A
$b=7.114$ (3) \AA
$c=8.436(3) \AA$
$\alpha=95.72(3)^{\circ}$
$\beta=109.30(2)^{\circ}$
$\gamma=113.14(2)^{\circ}$
$V=357.0(2) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=4.600 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2831 \\
& \quad \text { reflections } \\
& \theta=5.3-59.3^{\circ} \\
& \mu=30.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.2 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-I diffractometer φ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.113, T_{\text {max }}=0.261$
2831 measured reflections
1340 independent reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1031 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.171$
$(\Delta / \sigma)_{\text {max }}<0.001$
$S=1.03$
$\Delta \rho_{\text {max }}=4.22 \mathrm{e} \AA^{-3}$
1340 reflections
56 parameters
H -atom parameters constrained
$\Delta \rho_{\text {min }}=-1.49 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.020 (2)
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{N}$	$2.511(18)$	$\mathrm{N}-\mathrm{C} 1$	$1.33(3)$
$\mathrm{Hg}-\mathrm{I} 1$	$2.6036(19)$	$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.38(3)$
$\mathrm{Hg}-\mathrm{I} 2$	$2.6278(19)$	$\mathrm{C} 2-1^{\mathrm{i}}$	$1.38(3)$
$\mathrm{N}-\mathrm{C} 2$	$1.32(3)$		
$\mathrm{N}-\mathrm{Hg}-\mathrm{I} 1$	$99.5(4)$	$\mathrm{C} 2-\mathrm{N}-\mathrm{Hg}$	$123.3(14)$
$\mathrm{N}-\mathrm{Hg}-\mathrm{I} 2$	$97.1(4)$	$\mathrm{C} 1-\mathrm{N}-\mathrm{Hg}$	$121.9(15)$
$\mathrm{I} 1-\mathrm{Hg}-\mathrm{I} 2$	$163.41(7)$	$\mathrm{N}-\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	$124(2)$
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 1$	$114.8(19)$	$\mathrm{N}-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$	$121(2)$
$\mathrm{I} 2-\mathrm{Hg}-\mathrm{N}-\mathrm{C} 2$	$33.2(16)$	$\mathrm{I} 1-\mathrm{Hg}-\mathrm{N}-\mathrm{C} 1$	$31.7(17)$

Symmetry code: (i) $1-x, 2-y, 1-z$.
The highest peak and deepest hole were located $1.39 \AA$ from I2 and $0.86 \AA$ from Hg , respectively. H atoms were visible in a difference map and were treated as riding atoms, with a $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: X-STEP32 (Stoe \& Cie, 2000); data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
Breitinger, D. \& Brodersen, K. (1970). Angew. Chem. Int. Ed. Engl. 9, 357-367. Grdenić, D. (1965). Quart. Rev. 19, 303-327.
Jeffrey, G. A. \& Vlasse, M. (1967). Inorg. Chem. 6, 396-399.
Meyer, G. \& Nockemann, P. (2003). Z. Anorg. Allg. Chem. 629, 1447-1461.
Nockemann, P. (2002). Dissertation, Universität zu Köln, Germany.
Nockemann, P. \& Meyer, G. (2004a). Acta Cryst. E60, m744-m746.
Nockemann, P. \& Meyer, G. (2004b). Acta Cryst. E60, m747-m748.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (1998). X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). X-STEP32. Version 1.06f. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2001). X-AREA (Version 1.15) and X-RED32 (Version 1.22). Stoe \&Cie, Darmstadt, Germany.
Turner, D. E. \& Harmon, B. N. (1989). Phys. Rev. 40, 10516-10522.

